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Abstract. We give a detailed account of the recently formulated generalised vector dominance/colour-
dipole picture (GVD/CDP) of deep-inelastic scattering at low x ∼= Q2/W 2, including photoproduction.
The approach, based on γ∗(qq̄) transitions, qq̄ propagation and diffractive (qq̄)p scattering via the generic
structure of the two-gluon exchange, provides a unique and quantitatively successful theory for the γ∗p
total cross section, σγ∗p(W 2, Q2), at low x. The GVD/CDP is shown to imply the empirical low-x scaling
law, σγ∗p(W 2, Q2) = σγ∗p(η) with η = (Q2 + m2

0)/Λ2(W 2), that was established by a model-independent
analysis of the experimental data.

1 Introduction

Two important observations [1] on deep-inelastic scatter-
ing (DIS) at low values of the Bjorken scaling variable,
xBj ∼= Q2/W 2 � 1, were made since HERA started run-
ning in 1992:
(i) Diffractive production of high-mass states of masses
MX � 30GeV at an appreciable rate relative to the total
virtual-photon–proton cross section, σγ∗p(W 2, Q2). The
sphericity and thrust analysis of the diffractively produced
states revealed [1] (approximate) agreement in shape with
the final state produced in e+e− annihilation at the en-
ergy s1/2 =MX . This observation of high-mass diffraction
confirmed the conceptual basis of generalised vector dom-
inance (GVD) [2] that generalises the role of the low-lying
vector mesons in photoproduction [3] to DIS at low x via
the inclusion of high-mass contributions1.
(ii) An increase of σγ∗p(W 2, Q2) with increasing energy at
fixed Q2 and low x considerably stronger than the smooth
“soft-pomeron” behaviour known from photoproduction
and hadron–hadron scattering.

In a brief communication [7], we recently reported the
empirical validity of a scaling law for the Q2 dependence

� Supported by the BMBF, Bonn, Germany, Contract 05
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1 Indirect empirical evidence for diffractive production of

high-mass states was previously provided by the observation
[4] of shadowing in DIS on complex nuclei at low x and large
Q2 [5]. Compare also [6] for the connection between shadowing
and high-mass diffractive production

and theW dependence of the virtual-photon–proton cross
section,

σγ∗p(W 2, Q2) = σγ∗p(η), (1.1)

and, moreover, we noted that the scaling law (1.1) follows
from the generalised vector dominance/colour-dipole pic-
ture (GVD/CDP). This picture of DIS at low x rests [8] on
γ∗(qq̄) transitions, propagation of the qq̄ state and its for-
ward scattering from the proton via the generic structure
of two-gluon exchange [9]2. Accordingly, the GVD/CDP
supplements the traditional (off-diagonal) GVD approach
[2,10] by taking into account the qq̄ configuration in the
γ∗(qq̄) transition, as well as the generic structure of the
two-gluon exchange interaction the qq̄ colour dipole is
subject to [11], when transversing the proton. The di-
mensionless low-x scaling variable η in (1.1) is given by
η(Λ2(W 2), Q2) = (Q2 + m2

0)/Λ
2(W 2), where Λ2(W 2) is

an increasing function of W 2 and m2
0 denotes a threshold

mass.
In the present paper, we provide a detailed account of

our recent findings. In Sect. 2, we will give an explicit an-
alytic representation of σγ∗p(W 2, Q2) in the GVD/CDP.
We will derive the scaling law (1.1), and we will discuss the
photoproduction limit and the relation of the present ap-
proach to the pre-QCD formulation of off-diagonal GVD.
In Sect. 3, we will present the model-independent analysis
of the experimental data that establishes the empirical va-
lidity of the scaling law (1.1). Subsequently, we will show

2 The “generic structure” of two-gluon exchange includes ex-
change of more than two gluons, exchange of a gluon ladder,
etc. The only relevant and essential point is equal strength and
opposite sign of the two generic diagrams depicted in Fig. 1



78 G. Cvetič et al.: The generalised vector dominance/colour-dipole picture

that the observed η dependence of the data coincides with
the one predicted by the GVD/CDP. Final conclusions
will be given in Sect. 4.

2 The generalised vector dominance/
colour-dipole picture (GVD/CDP)

2.1 Generalities

We follow the custom [12,13] and as a starting point adopt
a representation of the virtual-photon–proton cross sec-
tion, σγ∗

T,Lp(W 2, Q2), in transverse position space. Sub-
sequently, we transform to momentum space, rather than
proceeding in historical order [11,8] from momentum
space to transverse position space.

In transverse position space, accordingly, we represent
σγ∗

T,Lp(W 2, Q2) as an integral over the variables r⊥ and z
determining the (qq̄) configuration in the γ∗(qq̄) transition
[8]3,

σγ∗
T,Lp(W 2, Q2) =

∑
λ,λ′=±1

∫
dz
∫

d2r⊥ (2.1)

×|ψ(λ,λ′)
T,L (r⊥, z,Q2)|2σ(qq̄)p(r2

⊥, z,W
2).

The γ∗(qq̄) transition amplitude, known as the photon
wave function, for transverse (T) and longitudinal (L)
photons is described by ψ(λ,λ′)

T,L (r⊥, z,Q2). Implicitly, (2.1)
contains the assumption that the configuration variable
z remains unchanged during the (qq̄)p scattering process.
The representation (2.1) must be read in conjunction
with [8]

σ(qq̄)p(r2
⊥, z,W

2)

=
∫

d2l⊥σ̃(qq̄)p(l2⊥, z,W
2)(1 − e−il⊥·r⊥), (2.2)

which implies

σ(qq̄)p(r2
⊥, z,W

2) → (2.3)
r2

⊥ · π
4

∫
dl2⊥ · l2⊥σ̃(qq̄)p(l2⊥, z,W

2), for r⊥ → 0,∫
d2l⊥σ̃(qq̄)p(l2⊥, z,W

2), for r⊥ → ∞.

The two-dimensional vector l⊥ is to be identified with
the transverse (gluon) momentum absorbed or emitted by
the quark (compare Fig. 1). The vanishing of the colour-
dipole cross section, σ(qq̄)p(r2

⊥, z,W
2), for vanishing trans-

verse interquark separation is known as “colour trans-
parency” [11].

3 By definition, r⊥ denotes the transverse (two-dimensional)
vector of the quark–antiquark separation. The (light-cone)
variable z is related to the angle of the quark momentum in
the rest frame of the qq̄ system via [8] 4z(1 − z) = sin2 θ, the
resulting mass of the qq̄ state thus being given by (2.6) below.
Twice the helicity of the quark and antiquark is denoted by λ
and λ′

k ⊥ +
l ⊥k⊥

-k ⊥
-(k⊥ +l⊥ )

l⊥ l⊥

γ∗ (Q2) γ∗ (Q2)

p p

k ⊥k⊥

-k ⊥
-k⊥ -l⊥ -k

⊥

l⊥ l⊥

γ∗ (Q2) γ∗ (Q2)

p p

Fig. 1. The two-gluon exchange. The arrows relate to the
transverse-momentum flow

The generic two-gluon exchange structure (compare
Fig. 1) contained in (2.2) becomes explicit when inserting
(2.2) into (2.1) in conjunction with the Fourier represen-
tation of the photon wave function,

ψ
(λ,λ′)
T,L (r⊥, z,Q2) (2.4)

=
√
4π

16π3

∫
k⊥0

d2k⊥ exp(ik⊥ · r⊥)M(λ,λ′)
T,L (k⊥, z;Q2).

One obtains (cf. [8])

σγ∗
T,Lp(W 2, Q2)

=
Nc

16π3

∑
λ,λ′=±1

∫
dz
∫

d2l⊥σ̃(qq̄)p(l2⊥, z,W
2)

×
∫

|k⊥|≥k⊥0

d2k⊥
∫

|k′
⊥|≥k⊥0

d2k′
⊥

×M(λ,λ′)
T,L (k′

⊥, z;Q
2)∗M(λ,λ′)

T,L (k⊥, z;Q2)

× [δ(k′
⊥ − k⊥) − δ(k′

⊥ − k⊥ − l⊥)] , (2.5)

where Nc = 3 denotes the number of quark colours. The
amplitudes M(λ,λ′)

T,L (k⊥, z;Q2) in (2.4) and (2.5) contain
[8] the couplings of the photon to the qq̄ pair as well as the
propagators of the qq̄ pair of mass Mqq̄, where in terms of
the quark (antiquark) transverse momentum, |k⊥|,

M2
qq̄ =

k2
⊥

z(1 − z)
. (2.6)

Transitions diagonal and off-diagonal in the masses of the
initial and final qq̄ states, Mqq̄ from (2.6), and M ′

qq̄ ac-
cording to

M ′2
qq̄ =

(k⊥ + l⊥)2

z(1 − z)
, (2.7)
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contribute with equal weight to (2.5), but opposite in sign,
as required by the generic two-gluon exchange structure.

Conversely, it is precisely the generic two-gluon-exch-
ange structure of the forward-virtual-Compton scattering
amplitude that justifies (2.1) as a starting point for low-x
DIS.

According to (2.3), σ̃(qq̄)p(l2⊥, z,W
2) should vanish suf-

ficiently rapidly to yield a convergent integral. It may be
suggestive to assume a Gaussian in l2⊥ for σ̃(qq̄)p(l2⊥, z,
W 2). Actually, explicit calculations become much simpler
if, without much loss of generality, instead of a Gaussian
a δ-function, located at a finite value of l2⊥, is used as an
effective description of σ̃(qq̄p)(l2⊥, z,W

2).
Accordingly, we adopt the simple ansatz [7],

σ̃(qq̄p)(l2⊥, z,W
2) (2.8)

= σ(∞)(W 2)
1
π
δ
(
l2⊥ − z(1 − z)Λ2(W 2)

)
.

This ansatz associates with any given energy,W , an (effec-
tive) fixed value of the two-dimensional (gluon) momen-
tum transfer, |l⊥|, determined by the so far unspecified
function Λ(W 2). The ansatz (2.8) also incorporates the
assumption that “aligned”, z → 0, configurations [14] of
the qq̄ pair absorb vanishing, l2⊥ → 0, gluon momentum.

For the subsequent interpretation of our results, we
note the explicit form of the transverse position space
colour-dipole cross section, obtained by substituting (2.8)
into (2.2),

σ(qq̄)p(r2
⊥, z,W

2)

= σ(∞)(W 2)(1 − J0

(
r⊥ ·

√
z(1 − z)Λ(W 2)

)
) (2.9)

� σ(∞)(W 2)




1
4
z(1 − z)Λ2(W 2)r2

⊥,

for 1
4z(1 − z)Λ2(W 2)r2

⊥ → 0,
1, for 1

4z(1 − z)Λ2(W 2)r2
⊥ → ∞.

The limit of σ(∞)(W 2) in the second line of the approxi-
mate equality in (2.9) stands for an oscillating behaviour
with decreasing amplitudes of the Bessel function, J0(r⊥
(z(1 − z))1/2Λ(W 2)), around σ(∞)(W 2), when its argu-
ment tends towards infinity. Apart from these oscillations,
the behaviour of σ(qq̄)p(r2

⊥, z,W
2) in (2.9) is identical to

the one obtained if the δ-function in (2.8) were replaced
by a Gaussian. Concerning the high-energy behaviour of
σ(qq̄)p(r2

⊥, z,W
2), we note that it is consistent with unitar-

ity restrictions, provided a decent high-energy behaviour
is imposed on σ(∞)(W 2).

The ansatz (2.8) is to be seen as an effective realiza-
tion, without much loss of generality, of the underlying
requirements of colour transparency, (2.2) and (2.3), and
hadronic unitarity for the colour-dipole cross section. The
unitarity requirement enters via the aforementioned de-
cent high-energy behaviour of σ(∞)(W 2).

With (2.8), the virtual-photon–proton cross section
(2.5) may be simplified considerably (cf. [8] as well as Ap-
pendixA). The right-hand side becomes reduced to essen-
tially the product of σ(∞)(W 2) from (2.8) with a dimen-
sionless integral over the masses dM2 ≡ dM2

qq̄ and dM ′2 ≡

dM ′2
qq̄ from (2.6) and (2.7). The dimensionless integral de-

pends on the ratios of the available parameters, namely
Q2/Λ2(W 2) and m2

0/Λ
2(W 2), where m2

0 stems from the
lower limit of the integral in (2.5), where k2

⊥0 = z(1 −
z)m2

0. This threshold mass corresponds to the fact that
the masses of hadronic vector states lie above a flavour-
dependent lower limit. For non-strange quarks, we have
m2

0 � m2
ρ, i.e. m

2
0 is identified as the mass scale at which

e+e− → hadrons reaches appreciable strength.
Instead of Q2/Λ2(W 2) and m2

0/Λ
2(W 2), it will turn

out to be preferable to use the low-x scaling variable [7]

η(Λ2(W 2), Q2) =
Q2 +m2

0

Λ2(W 2)
(2.10)

in conjunction with m2
0/Λ

2(W 2). The virtual-photon–
proton cross section (2.5) then becomes (compare Ap-
pendixA)

σγ∗
T,Lp(W 2, Q2)

=
αRe+e−

3π
σ(∞)(W 2)IT,L

(
η,

m2
0

Λ2(W 2)

)
. (2.11)

The quark charges Qi in units of the positron charge enter
(2.11) via

Re+e− = 3
∑

Q2
i , (2.12)

that is the ratio of hadron production to µ+µ− pair pro-
duction in e+e− annihilation. When specifying (2.11) to
photoproduction, Q2 = 0, only the light quark flavours
(u, d, s) contribute appreciably, and, accordingly, Re+e−

= 2 is to be inserted.
The function IT,L(η,m2

0/Λ
2(W 2)) in (2.11) is conve-

niently split into two additive contributions: a dominant
term, I(1)

T,L, and a correction term, I(2)
T,L. This splitting will

allow us to derive exact analytical expressions for one of
the terms, the dominant one, while for the correction term,
we will be content with an approximation in analytical
form.

The integral representations for the transverse and lon-
gitudinal dominant parts, I(1)

T and I(1)
L read

I
(1)
T

(
η,

m2
0

Λ2(W 2)

)

=
1
π

∞∫
m2

0

dM2

(M+Λ(W 2))2∫
(M−Λ(W 2))2

dM ′2ω(M2,M ′2, Λ2(W 2))

×
[

M2

(Q2 +M2)2
− M ′2 +M2 − Λ2(W 2)

2(Q2 +M2)(Q2 +M ′2)

]
, (2.13)

and

I
(1)
L

(
η,

m2
0

Λ2(W 2)

)

=
1
π

∞∫
m2

0

dM2

(M+Λ(W 2))2∫
(M−Λ(W 2))2

dM ′2ω(M2,M ′2, Λ2(W 2))

×
[

Q2

(Q2 +M2)2
− Q2

(Q2 +M2)(Q2 +M ′2)

]
. (2.14)
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The correction terms take the form

I
(2)
T

(
η,

m2
0

Λ2(W 2)

)

=
1
π

∞∫
m2

0

dM2Θ
(
m2

0 − (M − Λ(W 2))2
) m2

0∫
(M−Λ(W 2))2

dM ′2

×ω(M2,M ′2, Λ2(W 2))
M ′2 +M2 − Λ2(W 2)

2(Q2 +M2)(Q2 +M ′2)
, (2.15)

and

I
(2)
L

(
η,

m2
0

Λ2(W 2)

)

=
1
π

∞∫
m2

0

dM2Θ
(
m2

0 − (M − Λ(W 2))2
) m2

0∫
(M−Λ(W 2))2

dM ′2

×ω(M2,M ′2, Λ2(W 2))
Q2

(Q2 +M2)(Q2 +M ′2)
. (2.16)

Replacing the Θ function in (2.15) and in (2.16) by the
integration limits in the integration over dM2, we have

∞∫
m2

0

dM2Θ
(
m2

0 − (M − Λ(W 2))2
) m2

0∫
(M−Λ(W 2))2

dM ′2...

=




(m0+Λ(W 2))2∫
m2

0

dM2

m2
0∫

(M−Λ(W 2))2

dM ′2...,

forΛ(W 2) < 2m0,
(Λ(W 2)+m0)2∫

(Λ(W 2)−m0)2

dM2

m2
0∫

(M−Λ(W 2))2

dM ′2...,

forΛ(W 2) > 2m0,

(2.17)

i.e. the terms (2.15) and (2.16), when added to the dom-
inant terms (2.13) and (2.14), respectively, assure that
the lower limit of the integration over dM ′2 is given by
M ′2 = m2

0, and coincides with the lower limit of the in-
tegration over dM2, as required by symmetry in the in-
coming and outgoing qq̄ masses. Actually it turns out that
the transverse correction term, I(2)

T , is negligible, while the
longitudinal one4 is of some importance.

For the explicit expression for the integration measure
ω(M2,M ′2, Λ2(W 2)) appearing in (2.13) to (2.16) we re-
fer to Appendix A. For convenient reference, we note the
integral relations [8]

1
π

(M+Λ(W 2))2∫
(M−Λ(W 2))2

dM ′2ω(M2,M ′2, Λ2(W 2)) = 1, (2.18)

4 This is connected with the relative enhancement of low
masses in the integrand of the longitudinal case versus the
transverse one by the factor of Q2

and

1
π

(M+Λ(W 2))2∫
(M−Λ(W 2))2

dM ′2ω(M2,M ′2, Λ2(W 2))M ′2

=M2 + Λ2(W 2), (2.19)

however.

2.2 Analytic evaluation of σγ∗p(W 2, Q2)

We concentrate on the unpolarised cross section,

σγ∗p(W 2, Q2) = σγ∗
Tp + σγ∗

Lp, (2.20)

and refer to AppendixB for a separate treatment of the
longitudinal and transverse parts.

In terms of the sums of the transverse and longitudinal
contributions in (2.13) and (2.14),

I(1) = I
(1)
T + I

(1)
L , (2.21)

and in (2.15) and (2.16),

I(2) = I
(2)
T + I

(2)
L , (2.22)

and upon taking the sum of the dominant and the correc-
tion part,

I

(
η,

m2
0

Λ2(W 2)

)
= I(1)

(
1 +

I(2)

I(1)

)
, (2.23)

with (2.11), the unpolarised cross section (2.20) becomes

σγ∗p(W 2, Q2) =
αRe+e−

3π
σ(∞)(W 2)I

(
η,

m2
0

Λ2(W 2)

)
.

(2.24)
As mentioned, the integral representations for the

dominant transverse and longitudinal contributions (2.13)
and (2.14) may be analytically evaluated in a straight-
forward manner. Accordingly, I(1) in (2.21) and (2.23) is
explicitly given by

I(1)
(
η, µ ≡ m2

0

Λ2(W 2)

)

=
1
2
ln

η − 1 +
√
(1 + η)2 − 4µ
2η

+
1

2
√
1 + 4(η − µ)

× ln
η

(
1 +

√
1 + 4(η − µ)

)

4µ − 1 − 3η +
√
(1 + 4(η − µ))((1 + η)2 − 4µ)

. (2.25)

The correction term I(2) in (2.22), containing the sum
of the integrals in (2.15) and (2.16), was evaluated by nu-
merical integration for various sets of values of η and µ.
Guided by these numerical results, we found a simple an-
alytic approximation formula for the ratio in (2.23) that
reads
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Fig. 2. Comparision of the result for the correction factor
(1+I(2)/I(1)) obtained by numerical integration with the result
from the analytic approximation (2.26)

1 +
I(2)

I(1) = 1 + 2
m2

0

Λ2 (2.26)

×

√√√√√√√1
2
+

1
π
arctg


 1
π

(
η − m2

0

Λ2

)
− 1

2
(
η − m2

0

Λ2

)

.

A comparison of the results of the numerical integration
and the results of the analytic approximation (2.26) is
shown in Fig. 2. In the range of the parameters η and
m2

0/Λ
2(W 2) relevant in connection with the experimen-

tal data (compare Sect. 3), the error induced by employ-
ing the approximation formula (2.26) in (2.23) and (2.24)
is less than 0.3%. Accordingly, the expression (2.24) for
σγ∗p(W 2, Q2) together with (2.23) and the analytical re-
sults (2.25) and (2.26) will form the basis5 for the analysis
of the experimental data.

We briefly discuss the function I(η,m2
0/Λ

2(W 2)), in
(2.23) and (2.24) for various limits of the parameter space
that will be relevant for the data analysis. First of all, for
small values of m2

0/Λ
2(W 2), one may expand the expres-

sion for I(1)(η,m2
0/Λ

2(W 2)) in (2.25) to yield

I(1)
(
η,

m2
0

Λ2(W 2)

)

= I0(η) + I1(η)
m2

0

Λ2(W 2)
+O

(
m4

0

Λ4(W 2)

)
, (2.27)

where

I0(η) =
1

2
√
1 + 4η

ln
η(1 +

√
1 + 4η)

−1 − 3η + (1 + η)
√
1 + 4η

,

5 A FORTRAN code for evaluation of σγ∗p as a function of
(W 2, Q2) will be available from
http://www.desy.de/˜surrow/gvd.html

I1(η) =
1

1 + 4η

( −3
1 + η

+ 2I0(η)
)
. (2.28)

A numerical evaluation shows that the term linear in m2
0/

Λ2(W 2) becomes negligible as long as m2
0/Λ

2(W 2) � 1.
For m2

0/Λ
2(W 2) < 1, also the correction term (2.26) does

not deviate much from unity, and accordingly, I(η,m2
0/

Λ2(W 2)) in (2.24), in good approximation, only depends
on η,

I(η,m2
0/Λ

2(W 2)) � I0(η). (2.29)

For a sufficiently smooth W dependence of σ(∞)(W 2)
in (2.24), we have approximate scaling of the virtual-
photon–proton cross section,

σγ∗p(W 2, Q2) ∼= αRe+e−

3π
σ(∞)(W 2)I0(η), (2.30)

i.e. in good approximation, the γ∗p total cross section only
depends on the scaling variable η = (Q2 +m0)/Λ2(W 2).

It is instructive to consider the limiting cases of small
η and large η in I0(η). From (2.28), one finds

I0(η) (2.31)

=

{
ln(1/η) + O(η ln η), for η → ηmin = m2

0/Λ
2(W 2),

1/(2η) + O(1/η2), for η → ∞.

The behaviour of σγ∗p(η) thus changes dramatically, from
a logarithmic one for small η to a power-like one for large
η. Note that the small-η limit besides photoproduction
(Q2 = 0) also includes the limit of fixed Q2, but Λ2(W 2)
sufficiently large. As Λ2(W 2) will turn out to increase as
a power of W 2, one will be led to the conclusion that at
any value of Q2 the virtual-photon–proton cross section
will at sufficiently high energy, that is for small η, exhibit
the same smooth energy dependence that is observed in
photoproduction.

2.3 The photoproduction limit
and the significance of σ(∞)(W 2)

Evaluating the unpolarised cross section σγ∗p(W 2, Q2) in
(2.24) for Q2 = 0, or, equivalently, the transverse cross
section (2.11), we obtain our result for the cross section of
photoproduction,

σγp(W 2) =
αRe+e−

3π
σ(∞)(W 2)

× I

(
η(Λ2(W 2), Q2 = 0),

m2
0

Λ2(W 2)

)
, (2.32)

where, according to (2.10),

η(Λ2(W 2), Q2 = 0) =
m2

0

Λ2(W 2)
, (2.33)

and Re+e− = 2 is to be inserted. To proceed, it is sug-
gestive to require duality between the generic two-gluon
exchange structure of the GVD/CDP contained in (2.32)
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and the Regge behaviour experimentally verified for pho-
toproduction. This duality assumption is meant with re-
spect to pomeron exchange that dominates photoproduc-
tion in the high-energy limit. Accordingly, we require

σγp(W 2)Regge

=
αRe+e−

3π
σ(∞)(W 2)I

(
m2

0

Λ2(W 2)
,

m2
0

Λ2(W 2)

)
, (2.34)

where the notation σγp(W 2)Regge explicitly displays the
duality hypothesis mentioned above. Solving (2.34) for
σ(∞)(W 2),

σ(∞)(W 2) =
σγp(W 2)Regge

αRe+e−

3π
I

(
m2

0

Λ2(W 2)
,

m2
0

Λ2(W 2)

) , (2.35)

allows us to express the virtual-photon–proton cross sec-
tion (2.11) explicitly in terms of
σγp(W 2)Regge,

σγ∗
T,Lp(W 2, Q2) (2.36)

= σγp(W 2)Regge
IT,L

(
η(Λ2(W 2), Q2),

m2
0

Λ2(W 2)

)

I

(
m2

0

Λ2(W 2)
,

m2
0

Λ2(W 2)

) .

Concerning the relation (2.35), it seems appropriate
to remind ourselves of the meaning of σ(∞)(W 2). Accord-
ing to (2.9), σ(∞)(W 2) denotes the limiting behaviour of
the colour-dipole cross section, σ(qq̄)p(r2

⊥, z,W
2), both for

r⊥ → ∞ with Λ2(W 2) fixed, and for Λ2(W 2) → ∞ with
r⊥ fixed. The W dependence of σ(∞)(W 2), as a conse-
quence of the (logarithmic) increase with energy of the
denominator in (2.35), in general will deviate from the
one of σγp(W 2)Regge. This is not unexpected; the energy
dependence of the colour-dipole cross section a priori need
not coincide with the energy dependence characteristic for
ordinary hadron–hadron interactions.

In connection with the energy dependence and the
conceptual meaning of σ(∞)(W 2), a brief discussion of
the ρ0, ω, φ-dominance [15] approximation for the virtual-
photon–proton and, in particular, the photoproduction
cross section will be helpful. Returning to (2.11), and ig-
noring the off-diagonal transitions in (2.13), we approxi-
mate the integral (2.13) by its integrand to obtain

σγ∗
Tp(W 2, Q2) =

αRe+e−

3π
∆M2

ρ

M2
ρ

M4
ρ

(Q2 +M2
ρ )2

σ(∞)(W 2).

(2.37)

In (2.37), we made the simplifying assumption of flavour-
independent equal masses, M2 ≡ M2

ρ , and equal level
spacings, ∆M2 ≡ ∆M2

ρ , for the dominant vector mesons,
ρ0, ω and φ. Moreover, by assuming Re+e− = 2, we ig-
nore more massive vector-meson flavours, such as J/ψ,
etc. The connection of (2.37) with ρ0, ω, φ-dominance for

(virtual-) photon–hadron interactions becomes explicit by
introducing the photon–vector meson coupling strengths
via quark–hadron duality [16],

αRe+e−

3π
∆M2

ρ

M2
ρ

=
∑

V =ρ0,ω,φ

απ

γ2
V

, (2.38)

as well as the identification of σ(∞)(W 2) with the total
cross section of vector-meson–proton scattering,

σ(∞)(W 2) = σV p(W 2). (2.39)

As a consequence of the simplification of flavour inde-
pendence, σV p(W 2) denotes a weighted average of the
(ρ0p), (ωp) and (φp) cross sections. As the (ρ0p) and (ωp)
cross sections agree with each other, and the φ contribu-
tion is suppressed by the smaller coupling to the photon
and by the smaller (φp) cross section [2], the weighted av-
erage in (2.39) may approximately be identified with the
(ρ0p) cross section,

σ(∞)(W 2) ∼= σρp(W 2). (2.40)

The couplings in (2.38), by definition, denote the coupling
strengths of the photon to the vector mesons, V = ρ0, ω, φ,
as measured in e+e− annihilation by the integrals over the
corresponding vector-meson peaks,

απ

γ2
V

=
1

4π2α

∑
F

∫
σe+e−→V →F (s)ds, (2.41)

or equivalently, by the vector-meson widths,

ΓV →e+e− =
α2M2

V

12(γ2
V /4π)

. (2.42)

Upon inserting the quark–hadron duality relation (2.38)
and the hadronic vector-meson–proton cross section (2.40)
into (2.37), we obtain the ρ0, ω, φ-dominance prediction
for the transverse virtual-photon–proton cross section. It
exhibits the well-known violent disagreement with experi-
ment for Q2 > 0, even though ρ0, ω, φ-dominance yields a
reasonable approximation for photoproduction [3]. Drop-
ping the above simplification of flavour independence, it
reads [3]

σγp(W 2) =
∑

V =ρ0,ω,φ

απ

γ2
V

σV p(W 2)

=
απ

γ2
ρ

σρp

(
1 +

1
9
+

2
9

· 1
2

)
, (2.43)

where the relative weight of the w and φ contributions is
determined by the quark content of their wave functions,
and σφp

∼= (1/2)σρp is used. Numerically, from (2.42), by
inserting ΓV →e+e− ∼= 6.5 keV, one finds γ2

ρ/4π ∼= 0.53, and
accordingly (2.43) yields

σγp(W 2) = (1/240)σρp(W 2). (2.44)

This relation will be used in Sect. 3.3. It is of approximate
validity. A careful analysis at energies around W ∼= 3GeV
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revealed that the right-hand side in (2.44) yields 78% of
σγp [2].

Even though the above exposition of how the ρ0, ω, φ-
dominance approximation is contained in the GVD/CDP
may be useful in its own right, it has been our main con-
cern in this section to illuminate the meaning of σ(∞)

(W 2). In general, σ(∞)(W 2) in (2.35) differs conceptually,
and in its energy dependence, from a vector-meson–proton
cross section. It is in the ρ0, ω, φ-dominance approxima-
tion (2.37) that an identification of σ(∞)(W 2) with the
hadronic cross section, σρp(W 2) in (2.40), becomes jus-
tified. A strict validity of (2.40), however, when inserted
into (2.32), requires Λ2(W 2) to be an energy-independent
constant. Such a requirement, in turn, implies the energy
dependence of σγ∗p(W 2, Q2) to be identical for all Q2,
in gross disagreement with the experimental results from
HERA [17,18].

2.4 A reference to pre-QCD
off-diagonal generalised vector dominance

As strongly emphasised before [8], and explicitly displayed
in (2.5), in the GVD/CDP, it is the generic two-gluon ex-
change structure of the (qq̄)p interaction that leads to the
characteristic difference in sign between, and the necessary
cancellation of diagonal and off-diagonal contributions to
the virtual-forward-Compton scattering amplitude. The
difference in sign corresponds to destructive interference
between hadron-production amplitudes induced by differ-
ent masses of the qq̄ states the incoming photon dissoci-
ates into. The destructive interference is a necessity [10]
for the convergence of the mass-dispersion relations (2.13)
to (2.16), or, in other words, the consistency of scaling
in e+e− annihilation into hadrons with the GVD picture
of DIS at low x. Off-diagonal transitions in the mass-
dispersion relation, in order to simplify the formalism,
were frequently ignored [2,19] in the past, at the expense
of introducing an ad hoc effective 1/M2 decrease of the
(qq̄)p strong-interaction cross section. This approximation
is confronted with consistency problems [10], and an ap-
proach that does not rely on the diagonal approximation
is preferable right from the outset.

The necessary cancellation in the virtual-forward-
Compton amplitude between diagonal and off-diagonal
transitions was anticipated [10] during the pre-QCD era.
We indicate how an approximate evaluation of the GVD/
CDP indeed coincides6 with the pre-QCD formulation of
off-diagonal GVD.

We concentrate on the transverse part of the virtual-
photon–proton cross section in (2.11) and consider the
off-diagonal term in the mass-dispersion relation (2.13).
In order to find an approximate evaluation of the off-
diagonal contribution to the integral in (2.13), we start
by tentatively putting M ′2 = M2 in the denominator of
(2.13). Under this assumption, the integration over dM ′2
can easily be carried out by employing the integral rela-
tions for ω(M2,M ′2, Λ2(W 2)) in (2.18) and (2.19). One

6 For the connection between the GVD/CDP and off-
diagonal GVD, compare also [12] and [20]

notes that the result of this integration is identically re-
produced by replacing M ′2 by M ′2 = M2 + Λ2(W 2) in
the multiplicative factor in front of ω(M2,M ′2, Λ2(W 2))
in (2.13) prior to integrating over dM ′2. Returning to the
correct off-diagonal term in (2.13) by dropping the sim-
plifying assumption of M ′2 = M2 in the denominator
in (2.13), we now replace M ′2 in the factor multiplying
ω(M2,M ′2, Λ2(W 2)) by the more general mean value

M ′2 =M2 +
Λ2(W 2)
1 + 2δT

, (2.45)

that contains the parameter δT. The parameter δT is to
be chosen such that the off-diagonal integral is properly
reproduced in the sense of a mean-value evaluation of
this integral. With the substitution (2.45), as specified,
and upon integration over dM ′2, using (2.18), the integral
(2.13) becomes

IT

(
η,

m2
0

Λ2(W 2)

)
�

∞∫
m2

0

dM2


 M2

(Q2 +M2)2
(2.46)

−
M2 − δT

Λ2(W 2)
1 + 2δT

(Q2 +M2)(Q2 +M2 +
Λ2(W 2)
1 + 2δT


 .

With (2.46), and using the quark–hadron duality relation
(2.38), as well as the identification (2.40), the cross section
resulting from (2.11),

σγ∗
Tp(W 2, Q2) =

∑
V =ρ0,ω,φ

απ

γ2
V

σV p(W 2)
m2

ρ

∆m2
ρ

(2.47)

×
∞∫

m2
0

dM2


 M2

(Q2 +M2)2

−
M2 − δT

Λ2(W 2)
1 + 2δT

(Q2 +M2)(Q2 +M2 +
Λ2(W 2)
1 + 2δT


 ,

coincides7 with the one in [10] in the approximation that
Λ2 and δT are treated as appropriately chosen constants.

The original derivation [10] that led to (2.48) was based
on an infinite series of discrete vector-meson states. The
opposite signs of diagonal and off-diagonal transitions
were located at the γ∗(qq̄)-transition vertices, as, e.g., had
been suggested by bound-state quark-model calculations
[21]. It is amusing to note that the anticipated structure, in
the framework of QCD, now finds an entirely different jus-
tification: the origin of the sign difference has shifted from
the γ∗(qq̄) vertices to the generic structure of the two-
gluon exchange amplitude in the purely hadronic (qq̄)p
interaction.

7 In [10], compare (4) upon substituting (2) and (6), and
replace the sum in (4) by an integral
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3 The generalised vector
dominance/colour-dipole picture confronting
the experimental data on σγ∗p(W 2, Q2)

In confronting the theoretical results from Sect. 2 with the
experimental data, we will follow the strategy employed in
our recent communication [7]. In Sect. 3.1, accordingly, the
prediction (2.30) of scaling for the γ∗p total cross section,

σγ∗p(W 2, Q2) � σγ∗p(η) (3.1)

will be tested in a model-independent approach. In
Sect. 3.2, the empirical validity of the functional depen-
dence of σγ∗p(η) on η in the GVD/CDP given in (2.23) to
(2.26) will be investigated.

3.1 Low-x scaling in γ∗p total cross sections

The scaling variable η was defined by (2.10) as the ra-
tio of Q2 +m2

0 over Λ2(W 2). According to (2.8), Λ(W 2)
determines the magnitude of the (two-dimensional) mo-
mentum transfer |l⊥| to the quark and antiquark. As a
consequence, Λ(W 2) also determines the magnitude of the
final-state qq̄ masses,M ′, that can be reached from a given
qq̄ mass, M , in the initial state. This interpretation sug-
gests that Λ2(W 2) be an increasing function of the energy,
W . We will adopt a power-law ansatz,

Λ2(W 2) = C1(W 2 +W 2
0 )

C2 , (3.2)

and, alternatively, a logarithmic one,

Λ2(W 2) = C ′
1 ln

(
W 2

W ′2
0

+ C ′
2

)
. (3.3)

Altogether, the scaling variable η depends on m2
0 and the

constants C1,W
2
0 , C2 (or, alternatively, C ′

1,W
′2
0 , C

′
2) to be

determined by a fit to the data based on the scaling con-
jecture (3.1).

In the model-independent test of scaling, no specific
functional dependence of the total cross section (3.1) on η
is assumed. Accordingly, in the model-independent analy-
sis, the parameter C1 (or, alternatively, the parameter C ′

1)
remains undetermined. A change of C1 (or C ′

1) amounts to
a rescaling of η to C−1

1 η (or C ′−1
1 η), and, accordingly, the

absolute value of C1 (or C ′
1) is irrelevant for the existence

of a scaling behaviour for the γ∗p total cross section. For
the analysis and the representation of the data, we will
use a value of C1 (or C ′

1) that coincides with, or is in the
vicinity of the value to be determined in the fit to the data
based on the GVD/CDP in Sect. 3.2.

Technically, the empirical test of the scaling law (3.1)
is carried out as follows. Without loss of generality, we as-
sume that the conjectured scaling curve for σγ∗p(η) may
be represented by a piecewise linear function of η. This
assumption allows us to perform a fit to the data that de-
termines the parameters m2

0,W
2
0 , C2 simultaneously with

the values of the piecewise linear function σγ∗p(η) at a
number of points, ηi (i = 1, ..., N), of the variable η.
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Fig. 3. The experimental data for σγ∗p(W 2, Q2) for x �
Q2/W 2 < 0.1 vs. the low-x scaling variable η = (Q2 +
m2

0)/Λ2(W 2)

In Fig. 3, we show the result of the model-independent
analysis. For C1(C ′

1) the numerical value of C1 = 0.34
(C ′

1 = 1.64GeV2) was chosen. As seen in Fig. 3, upon
imposing the kinematic restriction of x ≤ 0.1 and Q2 ≤
1000GeV2, all available experimental data [17,18,22–24]
on photo- and electroproduction are indeed seen to lie on a
smooth curve that, for technical reasons, is approximated
by the piecewise linear fit function. The parameters ob-
tained from the fit, using the power-law ansatz (3.2), are
given by

m2
0 = 0.125 ± 0.027GeV2,

C2 = 0.28 ± 0.06, (3.4)

W 2
0 = 439 ± 94GeV2,

with χ2 per degree of freedom, χ2/ndf = 1.15. For the
logarithmic ansatz, we obtained

m2
0 = 0.12 ± 0.04GeV2,

C ′
2 = 3.5 ± 0.6, (3.5)

W ′2
0 = 1535 ± 582GeV2,

with χ2/ndf = 1.18.
We note that an analogous procedure, applied to the

experimental data without a restriction on x, does not
lead to a universal curve. Likewise, restricting oneself to
only those data points that belong to x > 0.1, no univer-
sal curve is obtained either; the fitting procedure leads to
entirely unacceptable results on the quality of the fit as
quantified by the value of χ2 per degree of freedom.

The model-independent phenomenological analysis
thus reveals that the scaling behaviour of the virtual-
photon–proton cross section derived from the GVD/CDP
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Fig. 4. The dependence of Λ2 on W 2, as determined by a fit of
the GVD/CDP predictions for σγ∗p to the experimental data

is indeed borne out by the experimental data. This result
by itself does not allow one to conclude that also the spe-
cific functional dependence on η of the GVD/CDP, or on
W 2 and Q2 as given in Sect. 2.2, holds for the data on the
γ∗p total cross section. To investigate this question, we
turn to Sect. 3.2.

3.2 Testing the η dependence of σγ∗p

in the GVD/CDP

Upon replacing σ(∞)(W 2) in (2.24) by the Regge parame-
terization of the total photoproduction cross section ac-
cording to (2.35), we have

σγ∗p(W 2, Q2)

= σγp(W 2)Regge
I

(
η(Λ2(W 2), Q2),

m2
0

Λ2(W 2)

)

I

(
m2

0

Λ2(W 2)
,

m2
0

Λ2(W 2)

) . (3.6)

The analytical results for I
(
η, (m2

0/Λ
2(W 2))

)
to be em-

ployed in the fits are given in (2.23) with (2.25) and (2.26).
For m2

0/Λ
2(W 2) � 1, we have (approximate) scaling,

compare (2.29) and (2.31).
In (3.6), for the photoproduction cross section, we use

the parameterization

σγp(W 2)Regge = AR(W 2)αR−1 +AP(W 2)αP−1, (3.7)

where W 2 is to be inserted in units of GeV2 and [25]

AR = 145.0 ± 2.0µb,
αR = 0.5, (3.8)

AP = 63.5 ± 0.9µb,
αP = 1.097 ± 0.002.

For a test of the empirical validity of the GVD/CDP
formula (3.6), one may evaluate (3.6) for the power-law
ansatz for Λ2(W 2) in (3.2), or the logarithmic one in
(3.3), using the parameters (3.4) and (3.5) from the model-
independent fit, and determine C1(C ′

1) by a fit of (3.6) to
the experimental data for σγ∗p(W 2, Q2).

The alternative approach, actually employed in our
analysis, is as follows. Rather than relying on the func-
tional form of, and the values of the parameters in Λ2(W 2)
from the model-independent analysis, we only assume that
Λ2(W 2) can be described by a smooth piecewise linear
function of W 2. The fit of (3.6) to the data for σγ∗p(W 2,
Q2) then is to determine m2

0, as well as the values of
Λ2(W 2) at a set of chosen values, W 2

i , for i = 1, . . ., N .
The values of Λ2(W 2

i ) obtained in our fit (for i = 1, . . ., 46)
under the restriction of x ≤ 0.01 and Q2 ≤ 100GeV2 are
shown in Fig. 4. This fitting procedure, with an acceptable
χ2/ndf = 1.15, provides the most direct empirical verifi-
cation of the Q2 dependence of the GVD/CDP. At any en-
ergy, Wi, the Q2 dependence, by our fit, is indeed verified
to be described by (2.13) to (2.16), or rather (2.25) and
(2.26), upon inserting the appropriate value of Λ2(W 2

i )
from Fig. 4.

It is in a second step that we now assume the power-
like and the logarithmic analytical form, respectively, for
Λ2(W 2) in (3.2) and (3.3), in order to fit (3.6) to the exper-
imental data for the γ∗p interaction again. The resulting
curves for Λ2(W 2) are also displayed in Fig. 4, and are
seen to provide a good representation of the results for
Λ2(W 2

i ). The fit parameters, in distinction to (3.4) and
(3.5), now include the absolute normalization C1 (C ′

1) of
the scaling variable η. The fitted parameters are given by

m2
0 = 0.16 ± 0.01 GeV2,

C1 = 0.34 ± 0.05, (3.9)
C2 = 0.27 ± 0.01,
W 2

0 = 882 ± 246 GeV2,

with χ2/ndf = 1.15 for the power-law ansatz, and by

m2
0 = 0.157 ± 0.009GeV2,

C ′
1 = 1.64 ± 0.14GeV2, (3.10)

C ′
2 = 4.1 ± 0.4,

W ′2
0 = 1015 ± 334GeV2,

with χ2/ndf = 1.19 for the logarithmic one. Since both,
the model-independent fit and the one based on the GVD/
CDP, describe the experimental data, the parameters in
η(Λ2(W 2), Q2) resulting from the different fit procedures
must be consistent with each other. This is the case: com-
pare (3.9) and (3.10) with (3.4) and (3.5), respectively.

It is worth stressing at this point that Λ2(W 2), shown
in Fig. 4, not only yields the denominator of the scaling
variable η. According to (2.9), Λ2(W 2) directly determines
the energy dependence of the colour-dipole cross section in
the limit of Λ2(W 2)r2

⊥ → 0; that is, the limit of sufficiently
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Fig. 5a,b. The GVD/CDP scaling curve for σγ∗p compared
with the experimental data a for x < 0.01, b for x > 0.01

small interquark separation in the colour dipole and for
non-asymptotic energies.

In Fig. 5, we show the explicit comparison of the exper-
imental data for σγ∗p(W 2, Q2) as a function of η with the
theoretical results of the GVD/CDP. The (approximate)
coincidence of the theoretical predictions over a wide range
of W 2, from W 2 ≈ 10GeV2 to W 2 ≈ 105 GeV2, demon-
strates the scaling property of the theory. As shown in
Fig. 5a, with the restrictions x < 0.01 and Q2 < 100GeV2

imposed on the data (as in the above fit), there is good
agreement between theory and experiment. In Fig. 5b, we
show the deviations between theory and experiment, oc-
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Fig. 6. The cross section for charm production, σcharm
γ∗p , in

addition to the total cross section, σγ∗p, as a function of η

curring when the data for x ≥ 0.01 are taken into account
exclusively.

One may wonder about the influence of the charm con-
tribution on the total cross section with respect to the scal-
ing behaviour in η. A priori, one may expect charm pro-
duction, when analysed by itself, to lead to a different mass
scale,m2

charm > m2
0, in η. In Fig. 6, we have plotted the ex-

perimental data [26] for σcharm
γ∗p (W 2, Q2) against η, in addi-

tion to the total cross section, σγ∗p(W 2, Q2). The charm-
production data contribute roughly 30% to σγ∗p(η), but
otherwise show approximately the same dependence on η
as observed for σγ∗p(η). Note that for the charm data,
Q2 � 10GeV2, so that it is fairly irrelevant whether η =
(Q2 +m2

0)/Λ
2(W 2) or η = (Q2 +m2

charm)/Λ2(W 2) is used
as a scaling variable. Clearly, if precise data on charm
production will be analysed with respect to their scaling
properties, one expects to arrive at m2

charm replacing m2
0

in η. This is irrelevant for the total cross section, however,
since with smaller values of Q2, charm production soon
becomes a minor contribution to σγ∗p(W 2, Q2).

As noted, the theoretical prediction (3.6) is based on
the replacement of the asymptotic colour-dipole cross sec-
tion, σ(∞)(W 2), in (2.24) in terms of photoproduction ac-
cording to the duality relation (2.35). In Fig. 7, we repre-
sent σ(∞)(W 2) as a function of W 2, calculated according
to (2.35) by inserting the Regge fit (3.7) for σγp(W 2)Regge

and Λ2(W 2) from (3.2) with the parameters (3.9). We
also show the cross section of photoproduction scaled by
the factor 240 according to the ρ0, ω, φ-dominance pre-
diction (2.44). At low energies, σ(∞)(W 2) is well approx-
imated by the scaled photoproduction cross section. The
energy dependence at low energies is dominated by the
Regge term in (3.7) proportional to (W 2)αR−1. The abso-
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Fig. 7. The asymptotic value σ(∞)(W 2) of the colour-dipole–
proton cross section. For comparison, also the photoproduc-
tion cross section, multiplied by the factor 240 from ρ0, ω, φ-
dominance (2.44), is shown

lute magnitude of σ(∞)(W 2) turned out to be somewhat
larger than σρp(W 2), so that, with σ(∞)(W 2) replacing
σρp(W 2), the relation (2.44) is fulfilled at low energies. At
high energies, σ(∞)(W 2) is weakly dependent on energy,
and it may even be approximated by a constant of about
30mb at 10% accuracy. It is worth noting that, within
the limits of this approximation, the energy dependence
of photoproduction according to (2.32) is entirely deter-
mined by the generic two-gluon exchange structure enter-
ing (2.32) via I

(
m2

0/Λ
2(W 2),m2

0/Λ
2(W 2)

)
. Since photo-

production at high energies is well represented by both,
(2.32) and (3.7), the generic two-gluon exchange struc-
ture and pomeron exchange are indeed seen to be dual
representation of the same phenomenon.

3.3 Comparing σγ∗p(W 2, Q2) in the GVD/CDP
with experiment for fixed Q2 as a function of W 2

With σ(∞)(W 2) ∼= const in the energy range relevant at
HERA, according to (2.9), the energy dependence of the
colour-dipole cross section for fixed and sufficiently small
interquark separation, r⊥, is determined by Λ(W 2).

According to (2.24), with (2.29) and (2.31), the limit-
ing behaviour of σγ∗p(W 2, Q2), i.e.

6π
αRe+e−

(Q2 +m2
0)
σγ∗p(W 2, Q2)

σ(∞)

=


2(Q2 +m2

0) ln
Λ2(W 2)
m2

0
, forQ2 → 0,

Λ2(W 2), forQ2 → ∞,
(3.11)
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Fig. 8a,b. The quantity P · σγ∗p(W 2, Q2) ≡ (6π(q2 +
m2

0))/(αRe+e−σ(∞))σγ∗p(W 2, Q2) defined in (3.11) is shown
as a function of W 2 at fixed Q2 a and as a function of Q2

at fixed W 2 b. The figure demonstrates that the data for
Q2 � 10GeV2 yield Λ2(W 2), where Λ2(W 2) determines the
energy dependence of the colour-dipole cross section at suffi-
ciently small interquark separation r⊥

allows one to directly deduce Λ2(W 2) from the experimen-
tal data by plotting the left-hand side of (3.11) againstW 2

at fixed Q2 or, alternatively, against Q2 at fixed W 2 (and
x ≤ 0.01). Figure 8 shows that the left-hand side of (3.11)
approaches Λ2(W 2) for 10GeV2 � Q2 � 100GeV2. The
upper limit onQ2 corresponds to the upper limit employed
in Fig. 5a and used in the GVD/CDP fit to the data. For
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Fig. 9a,b. The GVD/CDP predictions for σγ∗p(W 2, Q2) vs.
W 2 at fixed Q2 a in the presently accessible energy range com-
pared with experimental data for x ≤ 0.01, b for asymptotic
energies

Fig. 8, we use the value of m2
0 = 0.16GeV2 from (3.9), as

well as σ(∞) = 80GeV−2 ∼= 31mb according to Fig. 7.
Finally, in Fig. 9a, we show the GVD/CDP prediction

in comparison with the experimental data in the conven-
tional representation of σγ∗p(W 2, Q2) againstW 2 for fixed
Q2. A subset of all data used in the fits is presented for
illustration.

The explicit analytical form of the theoretical expres-
sion for the cross section, σγ∗p(W 2, Q2), allows us to in-
vestigate its behaviour at energies far beyond the ones
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Fig. 10. The GVD/CDP prediction for the structure function
F2(x, Q2) in comparision with the experimental data

being explored at HERA. According to (3.6), with (2.29)
and (2.31), at any sufficiently large Q2 � Λ2(W 2) (i.e.
large η), the cross section increases strongly with energy,
as Λ2(W 2), while finally, for sufficiently large energy (i.e.
small η), the hadron-like dependence on energy of pho-
toproduction, will be reached. Explicitly this is demon-
strated in Fig. 9b. While the power-law ansatz and the
logarithmic one for Λ2(W 2) coincide at present energies,
they differ strongly in how asymptotics will be reached.
Unfortunately, the approach to the asymptotic behaviour
is slow and can hardly be verified experimentally in the
foreseeable future, except, possibly, by the energy depen-
dence of precision data at small values of Q2 � 1GeV2.

Intuitively, a representation of the experimental data
on DIS in the low-x diffraction regime in terms of the
virtual-photon–proton cross section seems most appropri-
ate and, in particular, reveals the scaling in η. Neverthe-
less, for completeness, in Fig. 10, we show the data for the
structure function F2(x,Q2) together with the theoretical
results of the GVD/CDP.

3.4 A reference to related work

The closest in spirit to the present investigation is the
work by Forshaw, Kerley and Shaw [12] and by Golec-
Biernat and Wüsthoff [13]. While we agree with the gen-
eral picture of low-x DIS drawn by these authors, there
are numerous essential differences though. In our treat-
ment, the dependence of the colour-dipole cross section
on the configuration variable z is taken into account in
contrast to [12] and [13]. Our dipole cross section does
not depend on Q2, in agreement with the mass-dispersion
relations (2.13) to (2.16), but in distinction from the Q2
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(or rather x) dependence in [13]. A decent high-energy
behaviour at any Q2 (“saturation”) follows from the un-
derlying assumptions of colour transparency (the generic
two-gluon exchange structure) and hadronic unitarity in
distinction from the two-pomeron ansatz in [12] and in
[27] that needs modification at energies beyond the ones
explored at HERA8.

4 Conclusion

In conclusion, a unique picture, the GVD/CDP, emerges
for DIS in the low-x diffraction region. In terms of the (vir-
tual) Compton-forward scattering amplitude, the photon
virtually dissociates into (qq̄) vector states that propa-
gate and undergo diffraction scattering from the proton
as conjectured in GVD a long time ago. Our knowledge
on the photon–(qq̄) transition from e+e− annihilation to-
gether with the gluon-exchange dynamics from QCD al-
lows for a much more detailed theoretical description of
σγ∗p(W 2, Q2) than available at the time when the GVD
approach was formulated. In terms of the GVD/CDP, ex-
periments on DIS at low xmeasure the energy dependence
of the (qq̄)/colour-dipole–proton cross section, σ(qq̄)p(r2

⊥,
z,W 2). A strong energy dependence of this cross section
for small interquark separation (not entirely unexpected
within the GVD/CDP) is extracted from the data at large
Q2. The combination of colour transparency (generic two-
gluon exchange structure) with hadronic unitarity then
implies that for any interquark separation the strong in-
crease of the colour-dipole cross section with energy, at
sufficiently high energy, will settle down to the smooth in-
crease of purely hadronic interactions. The experimental
data establish scaling in η of σγ∗p. As a consequence, at
any fixed value of Q2 (at low x), σγ∗p will eventually, at
sufficiently high energy, reach the hadron-like behaviour
of photoproduction.
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Appendix A

In this Appendix we describe the steps leading from ex-
pression (2.5) to (2.13)–(2.16). The Fourier transform of
the photon wave function as given, for example, in [8], is
in the limit of massless quarks

M(λ,λ′)
L (k⊥, z;Q2) (A.1)

= − eqz(1 − z)
(z(1 − z)Q2 + k2

⊥)

√
Q22δλ,−λ′ ,

8 For additional references and a report on a recent discus-
sion meeting on the CDP, we refer to [28]

M(λ,λ′)
T,±1 (k⊥, z;Q2) (A.2)

= − eq

(z(1 − z)Q2 + k2
⊥)

√
2
k⊥e±iϕ(2z − 1 ± λ)δλ,−λ′ ,

where eq is the electric charge of quark q, ϕ is the az-
imuthal angle of k⊥ in the plane perpendicular to the
proton–photon axis of motion, λ and λ′ denote twice the
helicities of the quarks q and q̄, and the signs ± corre-
spond to the two transverse helicity state polarizations
εµ(±) = (0, 1/

√
2,±i/

√
2, 0) of the massive photon in its

rest frame. To obtain the total cross section in (2.5), the
sum over the helicities λ and λ′ is taken, and in the case
of the transversely (T) polarised photon γ∗ the average
over the polarizations P = ±1:

〈|ML(k⊥, z;Q2)|2〉 ≡
∑

λ,λ′=±1

|M(λ,λ′)
L (k⊥, z;Q2)|2

=
e2
q8Q

2z2(1 − z)2[
z(1 − z)Q2 + k2

⊥
]2 ; (A.3)

〈ML(k⊥ + l⊥, z;Q2)∗ML(k⊥, z;Q2)〉 (A.4)

=
e2
q8Q

2z2(1 − z)2[
z(1 − z)Q2 + k2

⊥
]
[z(1 − z)Q2 + (k⊥ + l⊥)2]

,

〈|MT(k⊥, z;Q2)|2〉
≡ 1

2

∑
P=±1

∑
λ,λ′=±1

|M(λ,λ′)
T,P (k⊥, z;Q2)|2

= 2e2
q

[
k2

⊥
(
z2 + (1 − z)2

)]
[
z(1 − z)Q2 + k2

⊥
]2 , (A.5)

〈MT(k⊥ + l⊥, z;Q2)∗MT(k⊥, z;Q2)〉 (A.6)

= 2e2
q

[
k⊥ · (k⊥ + l⊥)

(
z2 + (1 − z)2

)]
[
z(1 − z)Q2 + k2

⊥
]
[z(1 − z)Q2 + (k⊥ + l⊥)2]

.

In (2.5), the integration over k′
⊥ can be done trivially,

resulting in

σγ∗
T,Lp(W 2, Q2) =

Nc

16π3

∫
dz
∫

d2l⊥σ̃(qq̄)p(l2⊥, z,W
2)

×
{∫

|k⊥|≥k⊥0

d2k⊥〈|MT,L(k⊥, z;Q2)|2〉

−
∫

|k⊥|≥k⊥0,|k⊥+l⊥|≥k⊥0

d2k⊥ (A.7)

×〈MT,L(k⊥ + l⊥, z;Q2)∗MT,L(k⊥, z;Q2)〉
}
.

The multiple integrations in the above expression can be
rewritten in the following way. First we rename in all the
previous expressions the transfer momentum l⊥ to l′⊥.
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Then we rewrite in the above integrals the Fourier trans-
form σ̃(qq̄)p(l′2⊥, z,W

2) of the colour-dipole cross section as

σ̃(qq̄)p(l′2⊥, z) =

∞∫
0

dl2⊥σ̃(qq̄)p(l2⊥, z)δ(l
2
⊥ − l′2⊥). (A.8)

The integration over d2l′⊥ is then to be carried out first.
We denote the angle between k⊥ and k⊥ + l′⊥ as φ. We
replace d2l′⊥ by d2k′

⊥ where we identify k′
⊥ ≡ l′⊥ + k⊥

1∫
0

dz
∫

d2l′⊥σ̃(qq̄)p(l′2⊥, z)
∫

d2k⊥f(k⊥, |k⊥ + l′⊥|, φ, z)

=

1∫
0

dz
∫

dl2⊥σ̃(qq̄)p(l2⊥, z)
∫

d2k⊥

×
∫

d2k′
⊥δ
(
l2⊥ − (k′

⊥ − k⊥)2
)
f(k⊥, k′

⊥, φ, z). (A.9)

We now replace d2k′
⊥ ≡ (1/2)dk′2

⊥dϕk′ by (1/2)dk′2
⊥dφ,

because φ = ϕk′ − ϕk. The subsequent integration over
dϕk gives 2π. The above expression reduces to

π

2

1∫
0

dz
∫

dl2⊥σ̃(qq̄)p(l2⊥, z)
∫

dk2
⊥

∫
dk′2

⊥

2π∫
0

dφ

×δ(2k⊥k′
⊥ cosφ− k2

⊥ − k′2
⊥ + l2⊥)f(k⊥, k′

⊥, φ, z).(A.10)

The integration over dφ can now be easily performed; it
fixes the value of cosφ to a fixed value cosΦ, and gives

π

1∫
0

dz
∫

dl2⊥σ̃(qq̄)p(l2⊥, z)
∫

dk2
⊥

×
(k⊥+l⊥)2∫

(k⊥−l⊥)2

dk′2
⊥ω̃(k⊥, k′

⊥, l⊥)f(k⊥, k′
⊥, Φ, z), (A.11)

where

ω̃(k⊥, k′
⊥, l⊥) =

1
2k⊥k′

⊥

1√
1 − cos2 Φ

,

cosΦ =
(
k2

⊥ + k′2
⊥ − l2⊥

2k⊥k′
⊥

)
. (A.12)

The integration limits for k′2
⊥ in (A.11) are determined by

the triangle condition cos2 Φ ≤ 1. The fixed angle φ = Φ
is the angle between the vectors k⊥ and k′

⊥ and, at the
same time, the angle between the vectors k⊥ and k⊥+ l⊥.

When we trade the variables k2
⊥ and k′2

⊥ for M2 =
k2

⊥/(z(1 − z)) (2.6) and M ′2 = k′2/(z(1 − z)) (2.7), re-
spectively, taking into account the expressions (A.3)–(A.6)
in (A.7) and the transformed multiple integration form
(A.11)9, we obtain for the transverse case

σγ∗
T,p(W 2,Q2)

9 We have to keep in mind that we replaced k⊥ + l⊥ by
k⊥ + l′

⊥ ≡ k′
⊥ in the integrand expressions (A.3)–(A.6) and in

(2.7)

=
Nc

16π3 2e2
q π

1∫
0

dz
[
z2 + (1 − z)2

]

×
∫

dl2⊥σ̃(qq̄)p(l2⊥, z,W
2)

×




∞∫
m2

0

dM2

(M+L⊥(z))2∫
(M−L⊥(z))2

dM ′2ω
(
M2,M ′2, L2

⊥(z)
)

× M2

(Q2 +M2)2

−
∞∫

m2
0

dM2

(M+L⊥(z))2∫
max[m2

0,(M−L⊥(z))2]

dM ′2ω
(
M2,M ′2, L2

⊥(z)
)

× (M2 +M ′2 − L2
⊥(z))

2(Q2 +M2)(Q2 +M ′2)


 , (A.13)

where L⊥(z) ≡ l⊥/(z(1 − z))1/2, the lower cutoff is m2
0 ≡

k2
⊥0/(z(1 − z)), and ω = z(1 − z)ω̃. We have

ω(M2,M ′2, L2
⊥(z)) =

1
2MM ′

1√
1 − cos2 Φ

,

cosΦ =
(M2 +M ′2 − L2

⊥(z))
2MM ′ . (A.14)

Using the ansatz (2.8) for σ̃(qq̄)p(l2⊥, z,W
2) allows for triv-

ial integration over l2⊥, resulting in the additional factor
σ(∞)/π and the replacement L⊥(z) �→ Λ(W 2). Further, if
we assume that m2

0 is z-independent, then the integration
over z can be done, giving a factor 2/3. This then gives
exactly the result (2.11)–(2.13) and (2.15). The square of
the electric charge e2

q of the quark q is replaced in general
by the sum of the active quark flavours

∑
e2
i ≡ e2

0
∑
Q2

i
(2.12), and the number of quark colours is Nc = 3.

Formulae (2.14) and (2.16) for the longitudinal polar-
ization can be derived in a completely analogous way.

Appendix B

We restrict ourselves to giving the explicit expression for
I

(1)
T

(
η, (m2

0/Λ
2(W 2))

)
and I(1)

L

(
η, (m2

0/Λ
2(W 2))

)
. Evalu-

ation of the integrals in (2.13) and (2.14) yields

I
(1)
T

(
η, µ ≡ m2

0

Λ2(W 2)

)

=
1
2
ln
η − 1 +

√
(1 + η)2 − 4µ
2η

+
1 + 2(η − µ)

2
√
1 + 4(η − µ)

× ln
η
(
1 +

√
1 + 4(η − µ)

)
4µ− 1 − 3η +

√
(1 + 4(η − µ))((1 + η)2 − 4µ)

+
µ

η
− 1 (B.1)
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and

I
(1)
L

(
η, µ ≡ m2

0

Λ2(W 2)

)

=
η − µ√

1 + 4(η − µ)

× ln
4µ− 1 − 3η +

√
(1 + 4(η −mu))((1 + η)2 − 4µ)

η
(
1 +

√
1 + 4(η − µ)

)
+
(
1 − µ

η

)
. (B.2)

One easily checks that I(1)
L

(
η, µ ≡ (m2

0/Λ
2(W 2))

) → 0 for
η → µ.

Summing I(1)
L and I(1)

T yields (2.25).
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13. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017
(1999); Phys. Rev. D 60, 114023 (1999); A.M. Stasto, K.
Golec-Biernat, J. Kwiecinski, hep-ph 0007192

14. J.D. Bjorken, hep-ph/9601363
15. J.J. Sakurai, Currents and mesons (The University of

Chicago Press, Chicago 1969); D. Schildknecht, Springer
Tracts in Modern Physics, vol. 63 (1972) p. 57; A.
Donnachie, G. Shaw, in Electromagnetic Interactions of
Hadrons, vol. 2, edited by A. Donnachie, G. Shaw (Plenum
Press, New York 1978), p. 169; G. Grammar, Jr., Jeremiah
D. Sullivan, ibid., p. 195

16. D. Schildknecht, F. Steiner, Phys. Lett. B 56, 36 (1975)
17. ZEUS 94: ZEUS Collaboration, M. Derrick et al., Z. f.

Physik C 72, 399 (1996); ZEUS SVTX 95: ZEUS Collab-
oration, J. Breitweg et al., Eur. Phys. J. C 7, 609 (1999);
ZEUS BPC 95: ZEUS Collaboration, J. Breitweg et al.,
Phys. Lett. B 407, 432 (1997); ZEUS BPT 97: ZEUS Col-
laboration, J. Breitweg et al., Phys. Lett. B 487, 1, 53
(2000)

18. H1 SVTX 95: H1 Collaboration, C. Adloff et al., Nucl.
Phys. B 497, 3 (1997); H1 94: H1 Collaboration, S. Aid et
al., Nucl. Phys. B 470, 3 (1996); H1 97: H1 Collaboration,
C. Adloff et al., Eur. Phys. J. C 13, 609 (2000)

19. D. Schildknecht, H. Spiesberger, hep-ph/9707447; D.
Schildknecht, Acta Phys. Pol. B 28, 2453 (1997); D. Schild-
knecht, in Proceedings of the XXXIIIrd Recontres de
Moriond, ’98 QCD and High Energy Hadronic Interac-
tions, edited by J. Trân Thanh Vân (Edition Frontières
1998), p. 461; hep-ph/9806353

20. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rev. D 58,
094039 (1998); hep-ph/9712339
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